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Fig. 1. Our approach automatically decomposes an input color image into a sparse set of uniformly-colored additive mixing layers. Our algorithm splits
decomposition into a two-level geometric problem. The first level computes the 5D RGBXY convex hull and Delaunay tessellation of the input image pixels,
which simultaneously considers color and spatial relationships. Its vertices are outlined in black; the 5D simplices are difficult to visualize. Any color in the
image can be reproduced via a convex combination of these vertices. The second level computes an automatically-simplified RGB convex hull whose vertices
serve as a color palette. Since the RGBXY convex hull vertices lie inside the RGB convex hull, we can find mixing weights that control the color of the RGBXY
vertices, and therefore the entire image. Because the RGBXY vertices are unrelated to the palette, users can edit the palette and instantly obtain new additive
mixing layers. These layers can be used to reconstruct or recolor the input image. Example image from Cohen-Or et al. [2006].

We introduce an extremely scalable and efficient yet simple palette-based

image decomposition algorithm. Given an RGB image and set of palette col-

ors, our algorithm decomposes the image into a set of additive mixing layers,

each of which corresponds to a palette color applied with varying weight.

Our approach is based on the geometry of images in RGBXY-space. This

new geometric approach is orders of magnitude more efficient than previous

work and requires no numerical optimization. We provide an implementa-

tion of the algorithm in 48 lines of Python code. We demonstrate a real-time

layer decomposition tool in which users can interactively edit the palette to

adjust the layers. After preprocessing, our algorithm can decompose 6 MP

images into layers in 20 milliseconds.
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1 INTRODUCTION
In digital image editing, images are often represented as a set of

layers. This allows artists to organize their work and isolate modifi-

cations. The final image is obtained by compositing the layers with

some mixing operation [Porter and Duff 1984]. A variety of recent

approaches [Aksoy et al. 2017; Chang et al. 2015; Tan et al. 2016;

Zhang et al. 2017] to image editing have explored the inverse prob-

lem, decomposing an image into a palette and associated per-pixel

compositing or mixing parameters.

We propose an extremely efficient yet simple geometric approach

for decomposing an image into spatially coherent additive mixing

layers (Figure 1). In our approach, each output layer is a uniform

color applied with varying weights. After an initial palette is ex-

tracted (given an RMSE reconstruction threshold), the user can edit
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the palette and obtain new decompositions instantaneously. This al-

lows users to improve the decomposition by, for example, choosing

semantically meaningful colors or trading reconstruction error for

sparsity.

Our approach is inspired by the geometric palette extraction tech-

nique of Tan et al. [2016]. We consider the geometry of 5D RGBXY-

space, which captures color as well as spatial relationships and

eliminates numerical optimization. Our algorithm’s performance

is extremely efficient even for very high resolution images (≥ 100

megapixels)—20x faster than the state-of-the-art [Aksoy et al. 2017].

Its performance is virtually independent from the size of the image or

palette. After preprocessing, our decomposition can be re-computed
instantaneously for a new RGB palette. This allows designers to

edit the decomposition in real-time. Working code is provided in

Section 3.

2 RELATED WORK

Image Decomposition For recoloring applications, it is also crit-

ical to find a mapping between the extracted color palette and the

image pixels. Recent work is able to decompose the input image into

separate layers according to a palette. Tan et al. [2016] extract a set of

ordered translucent RGBA layers, based on a optimization over the

standard alpha blending model. Order-independent decompositions

can be achieved using additive color mixing models [Aksoy et al.

2017; Lin et al. 2017a; Zhang et al. 2017]. For the physically-based

palette extraction methods mentioned previously [Aharoni-Mack

et al. 2017; Tan et al. 2017], layers correspond to the extracted multi-

spectral pigments.We prefer a full decomposition to a (palette-based)

edit transfer approach like Chang et al. [2015]’s. With a full decom-

position, edits are trivial to apply and spatial edits become possible

(though we do not explore spatial edits in this work). We present

a new, efficient method for layer decomposition, based on the ad-

ditive color mixing model (Section 3.2). Our approach leverages

5D RGBXY-space geometry to enforce spatial smoothness on the

layers. This geometric approach is significantly more efficient than

previous approaches in the literature, easily handling images up to

100 megapixels in size.

Palette Extraction A straightforward approach consists of using

a k-means method to cluster the existing colors in an image in RGB

space [Chang et al. 2015; Nguyen et al. 2017; Phan et al. 2017; Zhang

et al. 2017]. This captures the most prominent colors. A different

approach consists of computing and simplifying the convex hull

enclosing all the color samples [Tan et al. 2016], which provides

more “primary” palettes that better represent the existing color

gamut of the image. A similar observation was made in the domain

of hyperspectral image unmixing [Craig 1994]. (With hyperspectral

images, palette sizes are smaller than the number of channels, so

the problem is one of fitting a minimum-volume simplex around the

colors. The vertices of a high-dimensional simplex become a con-

vex hull when the data is projected to lower dimensions.) Morse et

al. [2007] work in HSL space, using a histogram to find the dominant

hues, then to find shades and tints within them. Human perception

has also been taken into account in other works, training regres-

sion models on crowd-sourced datasets. [Lin and Hanrahan 2013;

O’Donovan et al. 2011]. Some physically-based approaches try to

extract wavelength-dependent parameters to model the original

pigments used paintings. [Aharoni-Mack et al. 2017; Tan et al. 2017].

Our work builds on top of Tan et al. [2016], adding a fixed recon-

struction error threshold for automatic extraction of palettes of

optimal size, as described in Section 3.1.

3 PALETTE EXTRACTION AND IMAGE
DECOMPOSITION

A good palette for image editing is one that closely captures the

underlying colors the image was made with (or could have been

made with), even if those colors do not appear in their purest form

in the image itself. Tan et al. [2016] observed that the color distribu-

tions from paintings and natural images take on a convex shape in

RGB space. As a result, they proposed to compute the convex hull

of the pixel colors. The convex hull tightly wraps the observed col-

ors. Its vertex colors can be blended with convex weights (positive

and summing to one) to obtain any color in the image. The convex

hull may be overly complex, so they propose an iterative simplifica-

tion scheme to a user-desired palette size. After simplification, the

vertices become a palette that represents the colors in the image.

We extend Tan et al. [2016]’s work in two ways. First, we propose

a simple, geometric layer decomposition method that is orders of

magnitude more efficient than the state-of-the-art. Working code

for our entire decomposition algorithm can be written in under 50

lines (Figure 3). Second, we propose a simple scheme for automatic

palette size selection.

3.1 Palette Extraction
In Tan et al. [2016], the convex hull of all pixel colors is computed

and then simplified to a user-chosen palette size. To summarize their

approach, the convex hull is simplified greedily as a sequence of

constrained edge collapses [Garland and Heckbert 1997]. An edge

is collapsed to a point constrained to strictly add volume [Sander

et al. 2000] while minimizing the distance to its incident faces. The

edge whose collapse adds the least overall volume is chosen next,

greedily. After each edge is collapsed, the convex hull is recomputed,

since the new vertex could indirectly cause other vertices to become

concave (and therefore redundant). Finally, simplification may result

in out-of-gamut colors, or points that lie outside the RGB cube. As

a final step, Tan et al. [2016] project all such points to the closest

point on the RGB cube. This is the source of reconstruction error in

their approach; some pixels now lie outside the simplified convex

hull and cannot be reconstructed.

We improve upon this procedure with the observation that the re-

construction error can be measured geometrically, even before layer

decomposition, as the RMSE of every pixel’s distance to the simpli-

fied convex hull. (Inside pixels naturally have distance 0.) Therefore,

we propose a simple automatic palette size selection based on a

user-provided RMSE reconstruction error tolerance (η = 2

255
in our

experiments). For efficiency, we divide RGB-space into 32 × 32 × 32

bins (a total of 2
15

bins). We measure the distance from each non-

empty bin to the simplified convex hull, weighted by the bin count.

We start measuring the reconstruction error once the number of
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image RGB-space convex hull 9 vertices 8 vertices

7 vertices 6 vertices 5 vertices 4 vertices

Fig. 2. In this example from Tan et al. [2016], our default RMSE tolerance
η automatically simplifies the RGB-space convex hull down to the same
5 vertices manually chosen in their work. When simplified to 4 vertices,
the blue pixels outside the polyhedron produce a large RMSE error. Image
©Dani Jones.

vertices has been simplified to 10. By doing this, we are able to ob-

tain palettes with an optimal number of colors automatically. This

removes the need for the user to choose the palette size manually,

leading to better layer decompositions. Figure 2 visualizes differ-

ent levels of simplified hulls for an image. For this example, our

algorithm chooses a palette of size 5 according to our default RMSE

tolerance.

(If non-constant palette colors were acceptable, instead of clipping

one could cast a ray from each pixel towards the out-of-gamut vertex;

the intersection of the ray with the RGB cube would be the palette

color for that pixel. There would be zero reconstruction error. The

stopping criteria could be the non-uniformity of a palette color,

measured by the area of the RGB cube surface intersected with the

simplified convex hull itself.)

3.2 Image decomposition via the RGBXY convex hull
From their extracted palettes, Tan et al. [2016] solved a non-linear

optimization problem to decompose an image into a set of ordered,

translucent RGBA layers suitable for the standard “over” composit-

ing operation. While this decomposition is widely applicable (owing

to the ubiquity of “over” compositing), the optimization is quite

lengthy due to the recursive nature of the compositing operation,

which manifests as a polynomial whose degree is the palette size.

Others have instead opted for additive mixing layers [Aksoy et al.

2017; Lin et al. 2017a; Zhang et al. 2017] due to their simplicity. A

pixel’s color is a weighted sum of the palette colors.

In this work, we adopt additive mixing layers as well. We provide

a fast and simple, yet spatially coherent, geometric construction.

Any point p inside a simplex (a triangle in 2D, a tetrahedron in 3D,

etc.) has a unique set of barycentric coordinates, or convex additive

mixing weights such that p =
∑
i wi ci , where the mixing weights

wi are positive and sum to one, and ci are the vertices of the sim-

plex. In our setting, the simplified convex hull is typically not a

simplex, because the palette has more than 4 colors. There still exist

convex weightswi for arbitrary polyhedron, known as generalized

barycentric coordinates [Floater 2015], but they are non-unique. A

straightforward technique to find generalized barycentric coordi-

nates is to first compute a tessellation of the polyhedron (in our

case, the simplified convex hull) into a collection of non-overlapping

simplices (tetrahedra in 3D). For example, the Delaunay generalized
barycentric coordinates for a point can be computed by performing

a Delaunay tessellation of the polyhedron. The barycentric coordi-

nates of whichever simplex the point falls inside are the generalized

barycentric coordinates. For a 3D point in general position in the

interior, the mixing weights will have at most 4 non-zero weights,

which corresponds to the number of vertices of a tetrahedron.

This is the approach taken by Tan et al. [2016] for their as-sparse-
as-possible (ASAP) technique to extract layers. Because Tan et al.

[2016] considered recursive over compositing, users provided a

layer or vertex order; they tessellated the simplified convex hull

by connecting all its (triangular) faces to the first vertex, which

corresponds to the background color. This simple star tessellation is

valid for any convex polyhedron. In the additive mixing scenario,

no order is provided; we discuss the choice of tessellation below.

Because the weights are assigned purely based on the pixel’s colors,

however, this approach predictably suffers from spatial coherence

artifacts. The colors of spatially neighboring pixels may belong to

different tetrahedra. As a result, ASAP layers produce speckling

artifacts during operations like recoloring (Figure 8).

Spatial Coherence To provide spatial coherence, our key insight

is to extend this approach to 5D RGBXY-space, where XY are the

coordinates of a pixel in image space, so that spatial relationship

are considered along with color in a unified way (Figure 1). We first

compute the convex hull of the image I in RGBXY-space:

VRGBXY = ConvexHull({ (Ri ,Gi ,Bi ,Xi ,Yi ) | i = 1, 2, . . .N })

whereVRGBXY is the matrix whose columns are theQ vertices of the

convex hull and i enumerates the N pixels of I . We then compute

Delaunay generalized barycentric coordinates (weights) for every

pixel in the image in terms of the 5D convex hull. To do this, we

tessellate the RGBXY convex hull into a set of simplices:

{S
j
RGBXY} = Delaunay_tessellation(VRGBXY).

Mixing weights for a pixel i of the image in terms of the 5D convex

hull vertices VRGBXY can be computed as(
S
j
RGBXY

)−1
[Ri ,Gi ,Bi ,Xi ,Yi , 1]

⊤

where pixel i is contained within simplex S
j
RGBXY and a simplex

is represented as the 6×6 matrix whose columns are its vertices

in homogeneous coordinates. With appropriate indexing (the 6

weights computed by the matrix product correspond to the 6 convex

hull vertices referenced by S
j
RGBXY), we construct the sparse N ×Q

weightmatrixWRGBXY. Pixels that have similar colors or are spatially
adjacent will end up with similar weights, meaning that our layers

will be smooth both in RGB and XY-space. We can express our N ×3
image via matrix multiplication as

I =WRGBXYVRGB (1)

where VRGB is a Q × 3 submatrix of VRGBXY.
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from numpy import *¬
from scipy.spatial import ConvexHull, Delaunay¬
from scipy.sparse import coo_matrix¬
¬
def RGBXY_weights( RGB_palette, RGBXY_data ):¬
    RGBXY_hull_vertices = RGBXY_data[ ConvexHull( RGBXY_data ).vertices ]¬
    W_RGBXY = Delaunay_coordinates( RGBXY_hull_vertices, RGBXY_data )¬
    # Optional: Project outside RGBXY_hull_vertices[:,:3] onto RGB_palette convex hull.¬
    W_RGB = Star_coordinates( RGB_palette, RGBXY_hull_vertices[:,:3] )¬
    return W_RGBXY.dot( W_RGB )¬
¬
def Star_coordinates( vertices, data ):¬
    ## Find the star vertex¬
    star = argmin( linalg.norm( vertices, axis=1 ) )¬
    ## Make a mesh for the palette¬
    hull = ConvexHull( vertices )¬
    ## Star tessellate the faces of the convex hull¬
    simplices = [ [star] + list(face) for face in hull.simplices if star not in face ]¬
    barycoords = -1*ones( ( data.shape[0], len(vertices) ) )¬
    ## Barycentric coordinates for the data in each simplex¬
    for s in simplices:¬
        s0 = vertices[s[:1]]¬
        b = linalg.solve( (vertices[s[1:]]-s0).T, (data-s0).T ).T¬
        b = append( 1-b.sum(axis=1)[:,None], b, axis=1 )¬
        ## Update barycoords whenever data is inside the current simplex (with threshold).¬
        mask = (b>=-1e-8).all(axis=1)¬
        barycoords[mask] = 0.¬
        barycoords[ix_(mask,s)] = b[mask]¬
    return barycoords¬
¬
def Delaunay_coordinates( vertices, data ): # Adapted from Gareth Rees¬
    # Compute Delaunay tessellation.¬
    tri = Delaunay( vertices )¬
    # Find the tetrahedron containing each target (or -1 if not found).¬
    simplices = tri.find_simplex(data, tol=1e-6)¬
    assert (simplices != -1).all() # data contains outside vertices.¬
    # Affine transformation for simplex containing each datum.¬
    X = tri.transform[simplices, :data.shape[1]]¬
    # Offset of each datum from the origin of its simplex.¬
    Y = data - tri.transform[simplices, data.shape[1]]¬
    # Compute the barycentric coordinates of each datum in its simplex.¬
    b = einsum( '...jk,...k->...j', X, Y )¬
    barycoords = c_[b,1-b.sum(axis=1)]¬
    # Return the weights as a sparse matrix.¬
    rows = repeat(arange(len(data)).reshape((-1,1)), len(tri.simplices[0]), 1).ravel()¬
    cols = tri.simplices[simplices].ravel()¬
    vals = barycoords.ravel()¬
    return coo_matrix( (vals,(rows,cols)), shape=(len(data),len(vertices)) ).tocsr()

Fig. 3. Python code for our RGBXY additive mixing layer decomposition
(48 lines).

We similarly computeWRGB, mixing weights for the RGBXY con-

vex hull vertices VRGBXY in terms of the RGB-space palette colors P .
With P represented as a #P × 3 matrix,

VRGB =WRGBP . (2)

WRGB is a Q × #P matrix. The palette colors are the simplified RGB

convex hull vertices. We consider only the RGB portion of each RG-

BXY convex hull vertex, which always lies inside the unsimplified
RGB convex hull. Due to the aforementioned out-of-gamut projec-

tion step when computing the simplified RGB convex hull, however,

an RGBXY convex hull vertex may occasionally fall outside it. We

set its weights to those of the closest point on the 3D simplified

convex hull. This is the only source of reconstruction error.

By combining Equations 1 and 2, we can express our image I =
WRGBXYWRGBP . The final weights areW =WRGBXYWRGB, which is

an N × #P matrix that assigns each pixel’s weights solely in terms

of the palette. These weights are smooth both in color and image

space. To decompose an image with a different RGB palette, one only

needs to recomputeWRGB and then perform matrix multiplication.

ComputingWRGB is extremely efficient, since it depends only on

the palette size and the number of RGBXY convex hull vertices. It is

independent of the image size and allows users to experiment with

image decompositions based on interactive palette editing (Figure 11

and the supplemental materials).

Delaunay tessellation Star tessellation

Fig. 4. The RGB-space convex polyhedron whose vertices are the palette
colors. The Delaunay tessellation (left) prefers to add short edges. In contrast,
our star tessellation (right) always includes the long, black-to-white edge
when tessellating. This results in barycentric coordinates that adhere to our
perceptual expectations: modifying yellow or blue should not affect pixels
located along the line of greys. See Figure 5 for a comparison in image-space.

Tessellation At first glance, any tessellation of 3D RGB-space

has approximately the same ℓ0 weight sparsity (4 non-zeros). In

practice, the “line of greys” between black and white is critically

important. Any pixel near the line of greys can be expressed as the

weighted combination of vertices in a number of ways (e.g. any

tessellation). It is perceptually important that the line of greys be

2-sparse in terms of an approximately black and white color, and

that nearby colors be nearly 2-sparse. If not, then grey pixels would

be represented as mixtures of complementary colors; any change to

the palette that doesn’t preserve the complementarity relationships

would turn grey pixels colorful (Figure 5 and 8). This tinting is

perceptually prominent and undesirable.
1
As illustrated in Figure 4,

our star tessellation always includes the long black-to-white edge

when tessellating the volume. In contrast, the Delaunay tessellation

prefers short edges.

To make the line of greys 2-sparse in this way, the tessellation

should ensure that an edge is created between the darkest and

lightest color in the palette. Such an edge is typically among the

longest possible edges through the interior of the polyhedron, as

the luminance in an image often varies more than chroma × hue.

As a result, the Delaunay tessellation frequently excludes the most

desirable edge through the line of greys. We propose to use a star

tessellation. If either a black or white palette color is chosen as

the star vertex, it will form an edge with the other. We choose the

darkest color in the palette as the star vertex. This strategy is simple

and predictable and extends naturally to premultiplied alpha RGBA

images.

We also experimented with a variety of strategies to choose the

tessellation such that the resulting layer decomposition is as sparse

as possible: RANSAC line fitting and PCA on the RGB point cloud

and finding the longest edge. We evaluated the decompositions

with several sparsity metrics ([Aksoy et al. 2017; Levin et al. 2008;

Tan et al. 2016], as well as the fraction of pixels with transparency

above a threshold). Ultimately, tinting was more perceptually salient

than changes in sparsity, and our proposed tessellation algorithm is

simpler, more efficient, and more predictable.
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Delaunay tessellation Star tessellation

Fig. 5. The Delaunay tessellation often does not tessellate color-space with
an edge along the line of greys. As a result, grey pixels are decomposed into
a mixture of complementary colors. Modifying any one of them will turn
grey pixels colorful. Our star tessellation always includes an edge along the
line of greys, meaning that grey pixels are mixtures of black and white and
remain unchanged when modifying other colors. The original images and
their star tessellation layers can be found in Figures 6 and 12. ©Dani Jones
(top); Michelle Lee (bottom).

4 EVALUATION

Quality The primary means to assess the quality of layers is to

apply them for some purpose, such as recoloring, and then identify

artifacts, such as noise, discontinuities, or surprisingly affected re-

gions. Figures 7 and 13 compare recolorings created with our layers

to those from Aksoy et al. [2017], Tan et al. [2016], and Chang et al.

[2015]. Our approach generates recolorings without discontinuities

(the sky in 7(b), second row), undesirable changes (the top of the

chair in 7(c), third row), or noise.

We have no explicit guarantees about the sparsity of our weights.

WRGB is as sparse as possible to reconstruct 3D colors (4 non-zeros

per row).WRGBXY has 6 non-zeros per row out of the (typically)

2000–5000 RGBXY convex hull vertices, which is also as sparse as

possible to recover a point in RGBXY-space. The sparsity of the

product of the two matrices depends on which 3D tetrahedra the 6

RGBXY convex hull vertices fall into. Nevertheless, it can be seen

that our results’ sparsity is almost as good as Tan et al. [2016].

Figures 6 and 12 visualize our additive mixing layers and those

of Aksoy et al. [2017] for direct inspection. In contrast with our ap-

proach, Aksoy et al. [2017]’s approach has trouble separating colors

that appear primarily in mixture. As a result, Aksoy et al. [2017]’s

1
For pathalogical images containing continuous gradients between complementary

colors, this tinting behavior would perhaps be desired.

approach sometimes creates an overabundance of layers, which

makes recoloring tedious, since multiple layers must be edited.

Our decomposition algorithm is able to reproduce input images

virtually indistinguishably from the originals. For the 100 images in

Figure 9, our RGBXY method’s RGB-space RMSE is typically 2–3.

Aksoy et al. [2017]’s algorithm reconstruct images with zero error,

since their palettes are color distributions rather than fixed colors.

We evaluate our RGB tessellation in Figure 8. In this experiment,

we generate a random recoloring by permuting the colors in the

palette. The RGB-space star triangulation approach is akin to Tan

et al. [2016]’s ASAP approach with the black color chosen to be

the first layer. The lack of spacial smoothness is apparent in be-

tween the RGB-only decompositions in the top-row and the RGBXY

decompositions in the bottom row. The decompositions using the

Delaunay generalized barycentric coordinates (left column) result

in undesirable tinting for colors near the line of grey. Additional

examples can be found in the supplemental materials.

Throughout the remainder of the paper, all our results rely on

our proposed layer decomposition.

Speed In Figure 9, we compare the running time of additive mix-

ing layer decomposition techniques. We ran our proposed RGBXY

approach on 100 images under 6 megapixels with an average palette

size of 6.95 and median palette size of 7. Computation time for

our approaches includes palette selection (RGB convex hull sim-

plification). Because of its scalability, we also ran our proposed

RGBXY approach on an additional 70 large images between 6 and 12

megapixels, and an additional 6 extremely large images containing

100 megapixels (not shown in the plot). The 100 megapixel images

took on average 12.6 minutes to compute. Peak memory usage was

15 GB. For further improvement, our approach could be parallelized

by dividing the image into tiles, since the convex hull of a set of

convex hulls is the same as the convex hull of the underlying data.

A working implementation of the RGBXY decomposition method

can be found in Figure 3 (48 lines of code). The “Layer Updating”

performance is nearly instantaneous, taking a few milliseconds to,

for 10 MP images, a few tens of milliseconds to re-compute the layer

decomposition given a new palette.

Our running times were generated on a 2015 13” MacBook Pro

with a 2.9 GHz Intel Core i5-5257UCPU and 16 GB of RAM. Our layer

decomposition approach was written in non-parallelized Python

using NumPy/SciPy and their wrapper for the QHull convex hull

and Delaunay tessellation library [Barber et al. 1996]. Our layer

updating was written in OpenCL.

Aksoy et al. [2017]’s performance is the fastest previous work

known to us. The performance data for Aksoy et al.’s algorithm is

as reported in their paper and appears to scale linearly in the pixel

size. Their algorithm was implemented in parallelized C++. Aksoy

et al. [2017] reported that their approach took 4 hours and 25 GB of

memory to decompose a 100 megapixel image. Zhang et al. [2017]’s

sole performance data point is also as reported in their paper.

We also compare our approach to a variant of Tan et al. [2016]’s

optimization. We modified their reconstruction term to the simpler,

quadratic one that matches our additive mixing layer decomposition

scenario. With that modification, all energy terms become quadratic.

However, because the sparsity term is not positive definite, it is not
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[Aksoy et al. 2017]

Ours

[Aksoy et al. 2017]

Ours

Fig. 6. A comparison between our proposed RGBXY image decomposition and that of Aksoy et al. [2017]. Aksoy et al. [2017] creates an overabundance of
layers (two red layers above) and does not extract the blueish tint, which appears primarily in mixture. Our RGBXY technique identifies mixed colors is able to
separate the translucent purple haze in front of the girl’s face. See Figure 13 for recolored images created from these layers. Additionally, our GUI allows
editing the palette to modify layers in real time. This allows users to further improve the decomposition, as shown in Figure 11 and the supplemental materials.
©Dani Jones (left); Michelle Lee (right).

(a)

(a)

(b)

(b)

(c)

(c)

(d)

(d)

(d)

(d)

(d)

(a) (b) (c)

Fig. 7. To evaluate our RGBXY decomposition algorithm, we compare our layers with previous approaches in a recoloring application, extending a figure from
Aksoy et al. [2017]. From left to right: (a) Aksoy et al. [2017], (b) Tan et al. [2016], (c) Chang et al. [2015] and (d) our approach. Our recoloring quality is similar
to the state of the art, but our method is orders of magnitude faster and allows interactive layer decomposition while editing palettes. The decomposed layers
themselves are shown in Figure 12. ©Karl Northfell (top row); Bychkovsky et al. [2011] (middle three rows); Adelle Chudleigh (bottom row).
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Fig. 8. Comparing tessellation strategies for color palettes in RGB-space.
The Delaunay tessellation column computes Delaunay barycentric coor-
dinates for the color palette. This tessellation often avoids creating the
perceptually important line of greys, leading to tinting artifacts. These are
avoided with a star tessellation emanating from the vertex closest to black.
See also Figure 5. Computing weights in RGB-space alone leads to spatial
smoothness artifacts. Our two-stage RGBXY decomposition provides color
and spatial smoothness. To interrogate the quality of layer decompositions,
we randomly permute the palette, revealing problems in computed weights.
See the supplemental materials for additional examples. ©DeviantArt user
Sylar113 (top); Fabio Bozzone (bottom).

Fig. 9. Running time comparison between four additive mixing image de-
composition algorithms. We evaluated our RGBXY algorithm on 170 images
up to 12 megapixels and an additional six 100 megapixel images (not shown;
average running time 12.6 minutes). Our algorithm’s performance is orders
of magnitude faster and scales extremely well with image size. The number
of RGBXY convex hull vertices has a greater effect on performance than
image size. Re-computing our layer decomposition with an updated palette
is nearly instantaneous (a few to tens of milliseconds).

Fig. 10. Our GUI for interactively editing palettes. See the text for details.

a straightforward Quadratic Programming problem; we minimize

it with L-BFGS-B and increased the solver’s default termination

thresholds since RGB colors have low precision (gradient and func-

tion tolerance 10
−4
). This approach was also written in Python using

NumPy/SciPy. The performance of the modified Tan et al. [2016]

is somewhat unpredictable, perhaps owing to the varying palette

sizes.

The fast performance of our approach is due to the fact that the

number of RGBXY convex hull verticesQ is virtually independent of

the image size and entirely independent of the palette size. Finding

the simplex that contains a point is extremely efficient (a matrix

multiply followed by a sign check) and scales well. Our algorithm’s

performance is more correlated with the number of RGBXY convex

hull vertices and tessellated simplices. This explains the three red

dots somewhat above the others in the performance plot.

In contrast, optimization-based approaches typically have param-

eters to tune, such as the balance between terms in the objective

function, iteration step size, and termination parameters.

Interactive LayerDecompositions To take advantage of our ex-

tremely fast layer decomposition, we implemented anHTML/JavaScript

GUI for viewing and interacting with layer decompositions (Fig-

ure 10). An editing session begins when a user loads an image and

precomputes RGBXY weights. Users can then begin with a generic

tetrahedron or with an automatically chosen palette, optionally with

a prescribed number of layers. Users can alter the palette colors in

3D RGB-space (lower-left) or activate a traditional color picker by

clicking on a layer (the turquoise layer as shown). As users drag the

palette colors, the layer decomposition updates live. (Although our

layer updating algorithm computes at an extremely high frame rate,

the bulk of the time in our GUI is spent transferring the data to the

browser via a WebSocket.) Users can also add and then manipulate

additional colors. See Figure 11 for a result created with our GUI;

see the supplemental materials for screen recordings of this and

other examples.

2018-09-14 14:50. Page 7 of 1–10. ACM Transactions on Graphics, Vol. 37, No. 6, Article 262. Publication date: November 2018.
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recoloring with 
interactively edited palette

recoloring with 
automatic paletteoriginal

Fig. 11. Our GUI allows users edit palettes and see the resulting layer de-
composition in real-time. Videos of live palette editing can be found in
the supplemental materials. In this example, the automatic palette (right)
becomes sparser as a result of interactive editing. The user edits the auto-
matically generated palette to ensure that the background and hair colors
are directly represented. As a result, editing the purple haze and hair no
longer affects the background color. ©Michelle Lee.

5 CONCLUSION
We presented an extremely efficient approach for decomposing an

image into spatially coherent additive mixing layers via RGBXY

space geometry. Our approach produces high quality results and is

extremely simple to implement. We achieve this implementation

simplicity and execution speed by making use of well-studied geo-

metric algorithms for computing the convex hull and Delaunay

tessellation of a set of points.

5.1 Limitations
During our performance tests for the image decomposition, we

found isolated cases where the computation of the 5D convex hull

takes somewhat longer than usual. We believe it is due to very

specific color distributions (3 out of 170 tested images), but we

would like to study the phenomenon in more depth.

Our star tessellation assumes that the palette colors are vertices

of a convex polyhedron. In particular, it cannot be used when some

palette colors lie in the interior of the convex hull. When this hap-

pens, one could fall back on a Delaunay tessellation, which may not

create an edge along the line of greys. The line of greys could be

maintained with a constrained tetrahedralization algorithm, though

these are complex and may add new, undesired vertices [Yang et al.

2005].

5.2 Future work

Image decomposition Inspired by Lin et al. [2017b], we wish to

explore the use of superpixels to see if we are able to achieve greater

speed ups. We also wish to explore parallel and approximate convex

hull algorithms. An algorithm that produces a smaller, approximate

convex hull containing only a certain percentile of points could

provide an intuitive parameter for balancing reconstruction error

with sparsity.
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Aksoy et al. [2017] Ours Aksoy et al. [2017] Ours

input reconstruction input reconstruction

Fig. 12. Additive mixing layers produced using our approach and the approach of Aksoy et al. [2017]. Images labeled “reconstruction” are reconstructed using
our layers. Top-to-bottom, left-to-right: ©Yotam Gingold; DeviantArt user Ranivius; Adelle Chudleigh; Bychkovsky et al. [2011]; Spencer Nugent; Bychkovsky
et al. [2011]; Michelle Lee; Piper Thibodeau; Adam Saltsman; Karl Northfell; Bychkovsky et al. [2011]; Bychkovsky et al. [2011]; Michelle Lee; George Dolgikh;
Michelle Lee.
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Original Aksoy et al. [2017] Tan et al. [2016] OursChang et al. [2015]

Fig. 13. A comparison of image recoloring techniques. Artifacts are marked with arrow and circles. We recolored each image using our method’s layers, and
then tried to obtain similar recolorings using other approaches’ palettes and decompositions. The results for Aksoy et al. [2017], which is distribution rather
than palette-based, were provided by that papers’ authors. Top-to-bottom: ©Piper Thibodeau; Adam Saltsman; Michelle Lee; Spencer Nugent; Michelle Lee;
Yotam Gingold; Dani Jones; Michelle Lee.
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